Lab #2: Snell's Law (Use Sig. Figs)

Purpose: To verify that Snell's Law, $\frac{\sin i^{\circ}}{\sin r^{\circ}} = \frac{n_2}{n_1}$, is a constant for two specific mediums.

Material:

- 1. Piece of paper
- 2. Glass Prism
- 3. Pins

Procedure:

- 1. Set up the apparatus as shown in the sketch.
- 2. Lay the glass block on a sheet of paper. With a sharp pencil trace an outline of the block.
- 3. Remove the block and draw a line at right angles to the outline of the block from any point, O. This line, ON, is a normal.

- 4. Draw a line making an angle of 10.0° with the normal.
- 5. Replace the block and place two pins, P and Q, along this line. The angle of incidence is 10.0°.
- 6. Place two more pins, R and S, at the far side of the block in such a position that SRPQ is a straight line when viewed through the block.
- 7. Remove the block and draw the line SR produced to the point A on the outline of the block.
- 8. Join OA.
- 9. Measure the angle of refraction, *r*.
- 10. Repeat the whole process for the values of $i = 0.00^{\circ}$, 20.0° , 30.0° , 40.0° , 60.0° , 70.0° and 80.0° .
- 11. Fill in the table of values with your results.
- 12. Plot a graph of $\sin r$ (x-axis) vs. $\sin i$ (y-axis) and draw a best-fit line.

Results and Analysis:

i°	r°	sin r°	sin i°
0.00			
10.0			
20.0			
30.0			
40.0			
50.0			
60.0			
70.0			
80.0			

1.	Calculate the slope of the graph.
2.	What does the slope represent?
3.	What is the index of refraction of air?
4.	What is the index of refraction of the glass?
5.	The book value of for the refractive index of air into glass is 1.42. Calculate the percentage error in your value.
6.	How do your results and data show that Snell's Law holds true?